Industrial Organic, Green Fireworks, and Unfolding Proteins

Rolling out OLEDs

I was scanning the commercial world for a change for The Alchemist’s first find this week, and learned that General Electric is hoping to revolutionize OLED (organic light emitting diode) manufacture. A chemical web pioneer is offering a solution making open chemistry commercially viable through the concept of information credits. While firework pollution could go up with a bang if the latest research into eco-friendly pyrotechnics is commercialized. Back down to earth, efforts to inspire girls in science, particularly chemistry, are apparently working, at least during National Girl Scout and National Chemistry weeks. Finally, the FDA is hoping to muscle in on the nanotech world but experts warn that it faces a daunting task with limited resources to approach this burgeoning field.

The Russell Berrie Foundation is the subject of this week’s award, it having donated $28 million to diabetes research with the aim of improving care and perhaps ultimately finding a cure. Find the details in this week’s Alchemist

Also in offsite news, this time in my SpectroscopyNOW.com – more on those green fireworks, how Raman spectroscopy could soon help oncologists predict whether radiotherapy will be successful for treating cervical cancer in different individuals, and the trouble with low-level ozone production.

Video nasties also feature in this week’s SpectroscopyNOW with functional MRI results showing how the brain copes with disgusting images. Apparently, the grin and bear it approach is not nearly as effective as one might think and the method of choice (whether unconscious or conscious) is to reappraise the situation to make what you are seeing not seem so bad.

Finally, two 40-year old stories brought bang up to date as NMR spectroscopy reveals that proteins can shapeshift. This flies in the face of received wisdom concerning protein folding and could lead to a whole new approach to targeting proteins with drugs. Similarly, new X-ray crystallographic evidence finally shows how the anticancer drug bleomycin works. Bleomycin was first isolated from a soil microbe by Japanese chemists in 1965 but its underlying mode of action has remained hidden, until now.

Here are the links to my latest science news stories on SpectroscopyNOW.com, live as of April 1: Green Fireworks, Video Nasties, Raman Rates Radiotherapy Results, Protein Shapeshifter, Clear View of Bleomycin, The Highs and Lows of Ozone.